Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 17(1): 129, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131070

RESUMEN

BACKGROUND: Recent interest has been focused on the production of platform chemicals from renewable biomass due to increasing concerns on global warming and depletion of fossil fuel reserves. Microbial production of platform chemicals in biorefineries has been suggested to be a promising solution for these problems. Gamma-aminobutyrate (GABA), a versatile bulk chemical used in food and pharmaceutical industry, is also used as a key monomer for nylon 4. GABA can be biologically produced by decarboxylation of glutamate. RESULTS: In this study, we examined high glutamate-producing Corynebacterium glutamicum strains as hosts for enhanced production of GABA from glucose and xylose as carbon sources. An Escherichia coli gadB mutant with a broad pH range of activity and E. coli xylAB genes were expressed under the control of a synthetic H36 promoter. When empty fruit bunch (EFB) solution was used as carbon source (45 g/L glucose and 5 g/L xylose), 12.54 ± 0.07 g/L GABA was produced by recombinant C. glutamicum H36GD1852 expressing E. coli gadB mutant gene and xylAB genes. Batch fermentation of the same strain resulted in the production of 35.47 g/L of GABA when EFB solution was added to support 90 g/L glucose and 10 g/L xylose. CONCLUSIONS: This is the first report of GABA production by recombinant C. glutamicum strains from co-utilization of glucose and xylose from EFB solution. Recombinant C. glutamicum strains developed in this study should be useful for an efficient and sustainable production of GABA from lignocellulosic biomasses.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Frutas/química , Ácido gamma-Aminobutírico/metabolismo , Fermentación , Ácido gamma-Aminobutírico/biosíntesis
2.
Appl Biochem Biotechnol ; 186(2): 335-349, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29611135

RESUMEN

In this study, we constructed amino acid biosensors that can be used as a high-throughput system to screen microorganisms that produce glutamate. The biosensors are based on two-component regulatory systems (TCRSs) combined with green fluorescent protein (GFP) as a reporter. A chimeric DegS/EnvZ (DegSZ) TCRS was constructed by fusing the N-terminal domain of the sensor kinase DegS from Planococcus sp. PAMC21323 with the catalytic domain of the osmosensor EnvZ from Escherichia coli to control expression of gfp in response to glutamate. gfp was controlled by the ompC promoter through the activated response regulator OmpR-P. The chimeric TCRS-based biosensors showed a 4-fold increase in the fluorescent signal after adding glutamate. A linear correlation was observed between fluorescence intensity and exogenously added glutamate concentration. The chimeric TCRS-based biosensor was used to determine glutamate concentration at the single-cell level by fluorescence-activated cell sorting. Therefore, this biosensor can be used to isolate novel gene products and optimize pathways involved in amino acid production.


Asunto(s)
Técnicas Biosensibles , Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Bacillales/genética , Dominio Catalítico , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Porinas/genética , Regiones Promotoras Genéticas , Análisis de la Célula Individual
3.
Appl Microbiol Biotechnol ; 102(9): 3915-3937, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29557518

RESUMEN

Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Fermentación , Microbiología Industrial/métodos , Ingeniería Metabólica , Reactores Biológicos , Corynebacterium glutamicum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Biotechnol J ; 12(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28862377

RESUMEN

The authors previously reported the production of polyhydroxyalkanoates (PHAs) containing 2-hydroxyacid monomers by expressing evolved Pseudomonas sp. 6-19 PHA synthase and Clostridium propionicum propionyl-CoA transferase in engineered microorganisms. Here, the authors examined four butyryl-CoA transferases from Roseburia sp., Eubacterium hallii, Faecalibacterium prausnitzii, and Anaerostipes caccae as potential CoA-transferases to support synthesis of polymers having 2HA monomer. In vitro activity analyses of the four butyryl-CoA transferases suggested that each butyryl-CoA transferase has different activities towards 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and lactate (LA). When Escherichia coli XL1-Blue expressing Pseudomonas sp. 6-19 PhaC1437 along with one butyryl-CoA transferase is cultured in chemically defined MR medium containing 20 g L-1 of glucose, 2 g L-1 of sodium 3-hydroxybutyrate, and various concentrations of sodium 2-hydroxybutyrate, PHAs consisting of 3HB, 2HB, and LA are produced. The monomer composition of PHAs agreed well with the substrate specificities of butyryl-CoA transferases from E. hallii, F. prausnitzii, and A. caccae, but not Roseburia sp. When E. coli XL1-Blue expressing PhaC1437 and E. hallii butyryl-CoA transferase is cultured in MR medium containing 20 g L-1 of glucose and 2 g L-1 of sodium 2-hydroxybutyrate, P(65.7 mol% 2HB-co-34.3 mol% LA) is produced with the highest PHA content of 30 wt%. Butyryl-CoA transferases also supported the production of P(3HB-co-2HB-co-LA) from glucose as the sole carbon source in E. coli XL1-Blue strains when one of these bct genes is expressed with phaC1437, cimA3.7, leuBCD, panE, and phaAB genes. Butyryl-CoA transferases characterized in this study can be used for engineering of microorganisms that produce PHAs containing novel 2-hydroxyacid monomers.


Asunto(s)
Acilcoenzima A/metabolismo , Escherichia coli/genética , Hidroxiácidos/metabolismo , Ingeniería Metabólica/métodos , Polihidroxialcanoatos/metabolismo , Acilcoenzima A/genética , Técnicas de Cultivo Celular por Lotes , Escherichia coli/metabolismo , Fermentación , Hidroxiácidos/química , Polihidroxialcanoatos/química
5.
Microb Cell Fact ; 15: 95, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27260327

RESUMEN

BACKGROUND: Lignocellulosic raw materials have extensively been examined for the production of bio-based fuels, chemicals, and polymers using microbial platforms. Since xylose is one of the major components of the hydrolyzed lignocelluloses, it is being considered a promising substrate in lignocelluloses based fermentation process. Ralstonia eutropha, one of the most powerful and natural producers of polyhydroxyalkanoates (PHAs), has extensively been examined for the production of bio-based chemicals, fuels, and polymers. However, to the best of our knowledge, lignocellulosic feedstock has not been employed for R. eutropha probably due to its narrow spectrum of substrate utilization. Thus, R. eutropha engineered to utilize xylose should be useful in the development of microbial process for bio-based products from lignocellulosic feedstock. RESULTS: Recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes encoding xylose isomerase and xylulokinase respectively, was constructed and examined for the synthesis of poly(3-hydroxybutyrate) [P(3HB)] using xylose as a sole carbon source. It could produce 2.31 g/L of P(3HB) with a P(3HB) content of 30.95 wt% when it was cultured in a nitrogen limited chemically defined medium containing 20.18 g/L of xylose in a batch fermentation. Also, recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes produced 5.71 g/L of P(3HB) with a P(3HB) content of 78.11 wt% from a mixture of 10.05 g/L of glucose and 10.91 g/L of xylose in the same culture condition. The P(3HB) concentration and content could be increased to 8.79 g/L and 88.69 wt%, respectively, when it was cultured in the medium containing 16.74 g/L of glucose and 6.15 g/L of xylose. Further examination of recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes by fed-batch fermentation resulted in the production of 33.70 g/L of P(3HB) in 108 h with a P(3HB) content of 79.02 wt%. The concentration of xylose could be maintained as high as 6 g/L, which is similar to the initial concentration of xylose during the fed-batch fermentation suggesting that xylose consumption is not inhibited during fermentation. Finally, recombinant R. eutorpha NCIMB11599 expressing the E. coli xylAB gene was examined for the production of P(3HB) from the hydrolysate solution of sunflower stalk. The hydrolysate solution of sunflower stalk was prepared as a model lignocellulosic biomass, which contains 78.8 g/L of glucose, 26.9 g/L of xylose, and small amount of 4.8 g/L of galactose and mannose. When recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes was cultured in a nitrogen limited chemically defined medium containing 23.1 g/L of hydrolysate solution of sunflower stalk, which corresponds to 16.8 g/L of glucose and 5.9 g/L of xylose, it completely consumed glucose and xylose in the sunflower stalk based medium resulting in the production of 7.86 g/L of P(3HB) with a P(3HB) content of 72.53 wt%. CONCLUSIONS: Ralstonia eutropha was successfully engineered to utilize xylose as a sole carbon source as well as to co-utilize it in the presence of glucose for the synthesis of P(3HB). In addition, R. eutropha engineered to utilized xylose could synthesize P(3HB) from the sunflower stalk hydrolysate solution containing glucose and xylose as major sugars, which suggests that xylose utilizing R. eutropha developed in this study should be useful for development of lignocellulose based microbial processes.


Asunto(s)
Cupriavidus necator/metabolismo , Helianthus/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Xilosa/metabolismo , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Cupriavidus necator/genética , Cupriavidus necator/crecimiento & desarrollo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroxibutiratos/análisis , Hidroxibutiratos/química , Ingeniería Metabólica , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Poliésteres/análisis , Poliésteres/química
6.
Bioresour Technol ; 181: 283-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25661307

RESUMEN

Rice bran treatment process for the production of 43.7 kg of hydrolysate solution containing 24.41 g/L of glucose and small amount of fructose from 5 kg of rice bran was developed and employed to produce polyhydroxyalkanoates in recombinant Escherichia coli and Ralstonia eutropha strains. Recombinant E. coli XL1-Blue expressing R. eutropha phaCAB genes and R. eutropha NCIMB11599 could produce poly(3-hydroxybutyrate) with the polymer contents of 90.1 wt% and 97.2 wt%, respectively, when they were cultured in chemically defined MR medium and chemically defined nitrogen free MR medium containing 10 mL/L of rice bran hydrolysate solution, respectively. Also, recombinant E. coli XL1-Blue and recombinant R. eutropha 437-540, both of which express the Pseudomonas sp. phaC1437 gene and the Clostridium propionicum pct540 gene could produce poly(3-hydroxybutyrate-co-lactate) from rice bran hydrolysate solution. These results suggest that rice bran may be a good renewable resource for the production of biomass-based polymers by recombinant microorganisms.


Asunto(s)
Biotecnología/métodos , Oryza/química , Polihidroxialcanoatos/biosíntesis , Residuos , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos/microbiología , Cupriavidus necator/metabolismo , Escherichia coli/metabolismo , Fermentación , Hidrólisis , Redes y Vías Metabólicas , Recombinación Genética/genética , Soluciones , Factores de Tiempo
7.
Biotechnol Bioeng ; 112(3): 638-43, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25258020

RESUMEN

A sucrose utilization pathway was established in Ralstonia eutropha NCIMB11599 and R. eutropha 437-540 by introducing the Mannheimia succiniciproducens MBEL55E sacC gene that encodes ß-fructofuranosidase. These engineered strains were examined for the production of poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)], respectively, from sucrose as a carbon source. It was found that ß-fructofuranosidase excreted into the culture medium could hydrolyze sucrose to glucose and fructose, which were efficiently used as carbon sources by recombinant R. eutropha strains. When R. eutropha NCIMB11599 expressing the sacC gene was cultured in nitrogen-free chemically defined medium containing 20 g/L of sucrose, a high P(3HB) content of 73.2 wt% could be obtained. In addition, R. eutropha 437-540 expressing the Pseudomonas sp. MBEL 6-19 phaC1437 gene and the Clostridium propionicum pct540 gene accumulated P(3HB-co-21.5 mol% LA) to a polymer content of 19.5 wt% from sucrose by the expression of the sacC gene and the Escherichia coli ldhA gene. The molecular weights of P(3HB) and P(3HB-co-21.5 mol%LA) synthesized in R. eutropha using sucrose as a carbon source were 3.52 × 10(5) (Mn ) and 2.19 × 10(4) (Mn ), respectively. The engineered R. eutropha strains reported here will be useful for the production of polyhydroxyalkanoates (PHAs) from sucrose, one of the most abundant and relatively inexpensive carbon sources.


Asunto(s)
Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Ingeniería Metabólica/métodos , Polihidroxialcanoatos/metabolismo , Sacarosa/metabolismo , Técnicas de Cultivo Celular por Lotes , Polihidroxialcanoatos/análisis
8.
Biotechnol J ; 9(10): 1322-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25124937

RESUMEN

L-Lysine is a potential feedstock for the production of bio-based precursors for engineering plastics. In this study, we developed a microbial process for high-level conversion of L-lysine into 5-aminovalerate (5AVA) that can be used as a monomer in nylon 6,5 synthesis. Recombinant Escherichia coli WL3110 strain expressing Pseudomonas putida delta-aminovaleramidase (DavA) and lysine 2-monooxygenase (DavB) was grown to high density in fed-batch culture and used as a whole cell catalyst. High-density E. coli WL3110 expressing DavAB, grown to an optical density at 600 nm (OD600 ) of 30, yielded 36.51 g/L 5AVA from 60 g/L L-lysine in 24 h. Doubling the cell density of E. coli WL3110 improved the conversion yield to 47.96 g/L 5AVA from 60 g/L of L-lysine in 24 h. 5AVA production was further improved by doubling the L-lysine concentration from 60 to 120 g/L. The highest 5AVA titer (90.59 g/L; molar yield 0.942) was obtained from 120 g/L L-lysine by E. coli WL3110 cells grown to OD600 of 60. Finally, nylon 6,5 was synthesized by bulk polymerization of ϵ-caprolactam and δ-valerolactam prepared from microbially synthesized 5AVA. The hybrid system demonstrated here has promising possibilities for application in the development of industrial bio-nylon production processes.


Asunto(s)
Aminoácidos Neutros/metabolismo , Biotecnología/métodos , Lisina/metabolismo , Nylons/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Aminoácidos Neutros/análisis , Escherichia coli/genética , Escherichia coli/metabolismo , Lisina/análisis , Nylons/química , Polimerizacion , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...